10th July 2012 Infertility Journal Reading Presenter: R3孫怡虹 Advisor: VS 鍾明廷

Changes in hormonal profile and seminal parameters with use of aromatase inhibitors in management of infertile men with low testosterone to estradiol ratios

Fertility and Sterility® VOL. 98 NO. 1 / JULY 2012

INTRODUCTION

Aromatase

✓ Cytochrome p450 enzyme
✓ In the ovaries, testis, adipose tissue, brain

Aromatase inhibitors

- Interact with aromatase enzyme in Estrogenssecreting tissues
 - \rightarrow Preservation of **T level**
 - →Limiting Estrogens production
- Widely used for endocrine treatment of:
 - Endometriosis, uterine leiomyomata
 - Endometrial & breast cancers
 - Impaired sperm production, ovulation induction

Previous study

- Men with normal gonadotropins and idiopathic oligospermia
 - \rightarrow Treated with aromatase inhibitors
 - \rightarrow Improved semen quality

This study

- Prospective, randomized trial
- Subset of infertile men with low T/E2 ratios
- 2.5 mg Letrozole ⇔ 1 mg Anastrazole daily
- Effect on the Hormonal & semen profiles
- Letrozole: Nonsteroidal, selective, potent 3rd generation aromatase inhibitor
- Anastrazole: Nonsteroidal agent, 4th generation of aromatase inhibitors

Inhibiting Aromatization

- Blocking estrogen production
 - \rightarrow Conversion of and rostenedione & T \rightarrow estrogen

MATERIALS AND METHODS

- Aretaieion Hospital, Athens
- March 2008 ~ July 2011
- Prospective, non randomized study
- 29 infertile men with a low serum T/E2 ratio (<10)
 - Group A: 15 x \rightarrow 2.5 mg letrozole orally, QD x 6m
 - Group B: $14 \times \rightarrow 1$ mg anastrazole orally, QD x 6m
 - Monitor Liver function testsevery month
- Serum hormones & semen parameters: Compare the beginning & the end of treatment

Patient Selection and data collection

- Thorough history, physical examination
- No therapeutic regimen for at least 3 months before the study, except occasional use of analgesics (e.g., paracetamol)
- Inclusion criteria:
 - Sperm concentrations < 1 x 10⁶ spermatozoa/MI
 - T/E2 ratio <10
 - T levels <300 ng/dL

Semen analyses

- Semen sample: Masturbation after 2–4 days of sexual abstinence, processed within 1 hour of ejaculation
- In the same andrology lab. according to WHO criteria
- Other information
 - Volume of ejaculate (in ml)
 - Sperm concentration (in millions /ml)
 - Motility (%)

Serum hormonal evaluation

- FSH, LH, T, E2, PRL, TSH
 - Blood samples in the early morning, 7:00 ~ 8:00 AM
 - Commercially available kit (Vidas, bioMerieux)

Refer	Reference ranges of the assays			
FSH	0.1–110 mIU/MI			
LH	0.1–100 mIU/mL			
E2	9–3,000 pg/mL			
Т	0.1–13 ng/mL			
PRL	0–200 ng/mL			
TSH	0–60 mIU/mL			

- Testicular volume: ultrasound (length x height x width x 0.71)
- Karyotype analysis:
 - Y chromosome microdeletion & patients with a total sperm count < 1 x 10⁶ → genetic analysis for cystic fibrosis
 - Exclusion: Abnormal karyotype or Y chromosome microdeletion

Idiopathic oligozoospermia

- 1. [FSH] within the normal range of reference values
- 2. Average value from the 2 most recent semen analyses < normal (WOH classification)
- 3. Absence of any abnormality that could be responsible for the impaired semen values: infection, trauma, autoimmunity, varicocele, epididymal factor
- 4. Negative results of the hormonal & other investigations

Total functional sperm fraction (TFSF, x 10⁶)

- An overall index of seminal quantity & quality
- Includes quantitative & qualitative factors of the semen
- Calculated by multiplying the sperm count (10⁶) by motility (%) and by normal morphology (%)
- Comparison from pretreatment to post treatment

Statistically analysis

- Medcalc statistical software (version 12.0.4.0)
- Mean ± SE (standard error of mean)
- Student's t test to compare pre- and post treatment
 - Sperm parameters
 - Serum hormone levels
 - Testicular volumes
- $P < 0.05 \rightarrow$ statistically significant difference

Both drugs were well tolerated

Letrozole group

- No improvement: 4/15, 26.6%
- 1 x asymptomatic mild \uparrow serum GOT/GPT, transient \rightarrow medication was continued
- 2 x transient weakness, 1 x nausea lasted for 10 days, 2 x mild headache

Both drugs were well tolerated

Anastrazole group

- No improvement: 3/14, 21.4%
- 2 x asymptomatic serum GPT
- 1 x mild diarrhea (at 1 month of use)
 - \rightarrow lasted for 3 days
 - \rightarrow subsided on its own without further sequelae
- 2 x transient nausea and
- 1 x mild headache

Group A (Letrozole)

Results of semen analysis and hormonal tests before and after 6 months of treatment with letrozole 2.5 mg/d.

Parameter	Before treatment	After treatment	<i>P</i> value
Body mass index (kg/m ²)	29.86 ± 2.53	30.1 ± 2.13	>.05
Testicular volume (mL)	14.89 ± 4.32	15.01 ± 4.30	.94
Serum FSH (mIU/mL)	8.35 ± 2.03	8.41 ± 1.95	.93
Serum LH (mIU/mL)	9.55 ± 1.84	9.28 ± 1.80	.69
Serum T (ng/dL) 👚	275 ± 29	495 ± 65	<.001
Serum E ₂ (pg/mL) 🚹	26.7 ± 1.75	14.98 ± 2.58	<.001
T/E ₂ ratio	9 ± 0.2	36 ± 4.5	<.001
Ejaculate volume (ml) 👚	2.85 ± 0.36	3.35 ± 0.20	.005
Sperm count (×10) 🏫 👘	3.5 ± 1.43	5.19 ± 1.62	.001
Motility (%) 🟫	11.05 ± 2.48	22.13 ± 4.37	.001
TFSF ^a (×10 ⁶) 🚹	1.71 ± 0.87	2.51 ± 1.09	.013

Group B (Anastrazole)

Results of semen analysis and hormonal tests before and after 6 months of treatment with anastrazole 1 mg/d.

Parameter

Before treatment After treatment P value

Body mass index (kg/m ²)	30.14 ± 3.1	30.0 ± 2.75	>.05
Testicular volume (mL)	13.65 ± 3.95	13.89 ± 3.42	.86
Serum FSH (mIU/mL)	8.35 ± 1.95	8.45 ± 1.93	.89
Serum LH (mIU/mL)	11.15 ± 1.58	11.01 ± 1.53	.81
Serum T (ng/dL) 🚹	265 ± 25	513 ± 65	<.001
Serum E ₂ (pg/mL) 👚	24.1 ± 2.01	15.15 ± 1.95	<.001
T/E ₂ ratio	8 ± 0.5	34 ± 5.9	<.001
Ejaculate volume (ml)	2.40 ± 0.15	3.18 ± 0.52	<.001
Sperm count (×10°)	4.15 ± 3.38	8.9 ± 2.11	<.001
Motility (%) 1	12.35 ± 3.89	22.85 ± 3.38	<.001
TFSF ^a (×10 ⁶) 1	1.91 ± 1.25	2.41 ± 1.06	.005

TFSF value comparison (Total functional sperm fraction)

- Statistical comparison using Student's t test
- For independent samples (all samples follow normal distribution)
- Letrozole
 Anastrazole group: No statistically significant difference
 - Value Before treatment (P = 0.62)
 - Value After treatment (P = 0.81)
- ☆ Both groups are comparable with respect to TFSF before and after treatment

TFSF value comparison (Total functional sperm fraction)

- Average TFSF After treatment pretreatment
 Letrozole group: 131.6%
 - Anastrazole group: ↑ 21.1%
- Detect the statistically significant difference between above increasing value
 - \rightarrow Type I error 0.05/Type II error 0.20
 - \rightarrow 273 patients are required in each group

DISCUSSION

- ▲ E2 within the male physiologic range
 → Significant change of LH
 (through an effect at the level of the pituitary gland)
- Aromatase inhibitor $\rightarrow \downarrow E2 \rightarrow \uparrow LH, FSH, T$
- FSH release:
 - Mainly under the control of inhibin
 - Circulating E2 has a strong effect in men

Aromatase inhibitor treatment

- Earler study:
 - Using Anastrozole or Testolactone → Positive action on sperm concentration & motility
- Another study:
 - Using testolactone → No significant improvement of sperm quality in men with oligospermia
- Recent study:
 - Idiopathic oligoasthenoteratozoospermia & \downarrow T/E2
 - Anastrozole + Tamoxifen vs. Tamoxifen \rightarrow
 - pregnancy rate

Saylam et al.

- 27 infertile men with a low serum T/E2 ratio (<10)
- 2.5 mg letrozole orally QD > 6 months
 - T/E2 ratio, ejaculate volume, sperm motility, total motile sperm count (TMSC) significantly
 - 10 x oligospermic men
 - \rightarrow 2 x achieved spontaneous pregnancy
 - Azoospermia
 - \rightarrow 23.5% presented spermatozoa in the ejaculate
 - \rightarrow 76.5% remained azoospermic

Patry et al.

- One 31-year-old man with primary infertility, normal serum FSH levels, and pattern of non obstructive azoospermia
- Aromatase inhibitor letrozole orally for up to 4 months
- → Final testicular biopsy: normal spermatogenesis

Raman et al.

• 140 sub fertile men with abnormal T/E2 ratios

→Testolactone 100–200 mg or anastrazole 1 mg daily

 Comparison of the efficacy of these two therapies on both hormonal and semen parameters: similar effects

Others Published data

- In Klinefelter's syndrome patients
 - \rightarrow Aromatase inhibitors before testicular sperm extraction \rightarrow with favorable results
- In patients having oligospermia
 - \rightarrow Clomiphene citrate \rightarrow Azoospermia
 - Not used in these patients
- Many infertile men with severe oligospermia
 - Can exhibit a \downarrow T/E2 ratio \rightarrow Aromatase inhibitor
 - \rightarrow Normalize values & improve semen quality

The present study

- Some men with
 - Severe oligospermia (<5x10⁶/mL)
 - Low T levels (<300 ng/dL)</p>
 - T (ng/dL) to E2 (pg/mL) ratio <10
 - Normal gonadotropins concentration
 - \rightarrow may have a treatable **endocrinopathy**

Endocrine evaluation

- Estimation of E2
- Calculation of the T (ng/dL) to E2 (pg/mL) ratio
 - <10 → might benefit from aromatase inhibitor → Improve T levels & possibly the seminal parameters

Aromatase inhibitor treatment Letrozole 🖘 Anastrazole

- Efficacy of improving the seminal parameters: similar
 - Nonresponse rate: 26.6% ⇔ 21.4%
 - T levels & T/E2 ratio → Improved in all patients (so that control arm was not used)
- Side effects
 - Both well tolerated & subsided with time
 - No significant difference in the incidence and severity of side effects between the two groups

- Both anastrazole and letrozole
 - Are equally effective in the improvement of T levels and seminal parameters
 - In patients with severe oligospermia (<5 x 106/mL), low T levels (<300 ng/dL), and a T (ng/dL) to E2 (pg/mL) ratio <10
 - Presented side effects are mild, well tolerated, and subside with the time

Long-term use

- In men: no available data
- Postmenopausal women with breast cancer
 - At 5 years of use of letrozole
 - Main potential concerns: risk of osteoporosis
 - Letrozole vs. placebo:
 - -Reporting osteoporosis: 6.9% vs. 5.5%
 - Bisphosphonates (↑bone strength) use:
 21.1% vs. 18.7%
 - Possible mild 个 cholesterol levels

Possible limitations

- Relatively small numbers of participating patients in each group
- No data about Rates of IUI/IVF & Pregnancy outcomes
 - Pregnancy achievement rates → Clinical significance of the improvement of semen parameters

- A control arm was not used → in the study given the previously published reports describing benefit of aromatase inhibition in men with E2/T ratios >10:1
 - Need further prospective, randomized, blinded, placebo controlled studies → clarify the role of aromatase inhibitors in the management of male infertility

THANK YOU FOR CONSULTATION